Logaritmes
Recorda aplicar la definició i les propietats de logaritmes.
Exercici 1. Calcula el logaritme.
- \(\log_2 8\) =
- \(\log_3 9\) =
- \(\log_4 2\) =
- \(\log_{27} 3\) =
- \(\log_5 0.2\) =
- \(\log_2 0.25\) =
- \(\log_{0.5} 16\) =
- \(\log_{0.1} 100\) =
- \(\log_a \sqrt[3]{a^2}\) =
- \(\log_{\sqrt{2}} 2\) =
- \(\log_4 64\) =
- \(\log_{2\sqrt{2}} 0.25\) =
- \(\log_{\sqrt{2}} 32\) =
- \(\log_{1/3} \sqrt[3]{9}\) =
- \(\ln \sqrt[5]{e^2}\) =
- \(\log 0.0001\) =
- \(\log 0\) =
- \(\log_5 5\sqrt{5}\) =
- \(\log_3 \frac{\sqrt[4]{3}}{\sqrt{27}}\) =
- \(\log_4 \frac{1}{\sqrt[3]{1024}}\) =
- \(\log_3 27 + \log_3 1\) =
- \(\log_5 25 - \log_5 5\) =
- \(\log_4 64 + \log_8 64\) =
- \(\log 0.1 - \log 0.01\) =
- \(\log 5 + \log 20\) =
- \(\log 2 - \log 0.2\) =
- \(\log 32 / \log 2\) =
- \(\log 3 / \log 81\) =
- \(\log_2 3 \times \log_3 4\) =
- \(\log_9 25 \div \log_3 5\) =
Solucions
- 3
- 2
- 1/2
- 1/3
- -1
- -2
- -4
- -2
- 2/3
- 2
- 3
- -4/3
- 10
- -2/3
- 2/5
- -4
- 7
- 3/2
- -5/4
- -5/3
- 3
- 1
- 5
- 1
- 2
- 1
- 5
- 1/4
- 2
- 1
Exercici 2. Determina el valor de x.
- \(\log_3 81 = x\)
- \(\log_5 0.2 = x\)
- \(\log_2 16 = x^3/2\)
- \(\log_2 x = -3\)
- \(\log_7 x = 3\)
- \(\log_x 125 = 3\)
- \(\log_x 25 = -2\)
- \(\log_{2x+3} 81 = 2\)
- \(x + 2 = 10^{\log 5}\)
- \(x = 10^{4\log 2}\)
- \(x = \frac{\log 8}{\log 2}\)
- \(\log_\frac{9}{16} x = \frac{3}{2}\)
- \(\log_4 64 = \frac{2x - 1}{3}\)
- \(\log_6 [4(x - 1)] = 2\)
- \(\log_8 [2(x^3 + 5)] = 2\)
- \(x = \frac{\log 625}{\log 125}\)
- \(\frac{\log (x + 1)}{\log (x - 1)} = 2\)
- \(\frac{\log (x - 7)}{\log (x - 1)} = 0.5\)
- \(\log_7 7x = 2\)
- \(\log_x \frac{1}{3} = -\frac{1}{2}\)
- \(\log_x e = -3\)
- \(\log_x 0.015625 = -3\)
- \(\log_7 x^4 = 2\)
- \(\log_{\frac{1}{8}} x = \frac{1}{3}\)
Solucions
- 4
- -1
- 2
- 1/8
- 343
- 5
- 1/5
- 3
- 3
- 16
- 3
- 27/64
- 5
- 10
- 3
- 4/3
- 3
- 10
- 7
- 9
- \(e^{-1/3}\)
- 4
- \(\pm \sqrt{7}\)
- 1/2
Exercici 3. Calcula el valor de les expressions següents.
- \(\log_2 \frac{\sqrt[6]{64} \cdot 4^2}{2^5 \cdot \sqrt[3]{512}} =\)
- \(\log_3 \frac{27 \cdot \sqrt{729}}{81 \cdot \sqrt[3]{27}} =\)
- \(\log_5 \frac{25 \cdot \sqrt[4]{625}}{125} =\)
- \(\log_7 \frac{49 \cdot \sqrt[3]{343}}{\sqrt{2401}} =\)
- \(\log \left( \frac{0.01 \cdot \sqrt[3]{100}}{10^{-1} \cdot 0.1} \right) =\)
Solucions
Exercici 4. Redueix a un sol logaritme.
- \(\log a + \log b\) =
- \(\log x - \log y\) =
- \(\tfrac12\log x + \tfrac12\log y\) =
- \(\log a - \log x - \log y\) =
- \(\log p + \log q - \log r - \log s\) =
- \(\log 2 + \log 3 + \log 4\) =
- \(\tfrac13\log a - \tfrac12\log b - \tfrac12\log c\) =
- \(\tfrac32\log a + \tfrac52\log b\) =
- \(\log a + \tfrac12\log b - 2\log c\) =
- \(\log(a+b) + \log(a-b)\) =
- \(\tfrac12\log x - \tfrac13\log y + \tfrac14\log z\) =
- \(\log(a-b) - \log 3\) =
- \(\log a \;-\; 4\log b \;+\; \tfrac15\bigl(\log c - 2\log d\bigr)\) =
- \(\tfrac{p}{n}\log a + \tfrac{q}{n}\log b\) =
- \(\log_{a}(a\,c) + \log_{d}(d^{3}) + \log_{b} b - \log_{a} c\) =
Solucions
- \(\log(a\cdot b)\)
- \(\log\left(\frac{x}{y}\right)\)
- \(\log\sqrt{xy}\)
- \(\log\left(\frac{a}{xy}\right)\)
- \(\log\left(\frac{\rho\cdot q}{r\cdot s}\right)\)
- \(\log 24\)
- \(\log\left(\frac{\sqrt[3]{a}}{\sqrt{b\cdot c}}\right)\)
- \(\log\sqrt{a^{3}b^{5}}\)
- \(\log\left(\frac{a\sqrt{b}}{c^{2}}\right)\)
- \(\log(a^{2}-b^{2})\)
- \(\log\left(\frac{\sqrt{x}}{\sqrt[3]{y}\,\sqrt[4]{z}}\right)\)
- \(\log\left(\frac{a-b}{3}\right)\)
- \(\log\left(\frac{a}{b^{4}}\sqrt{\frac{c}{d^{2}}}\right)\)
- \(\log\sqrt[n]{a^{\rho}\cdot b^{\sigma}}\)
- \(5\)
Exercici 5. Sabent que log 2= 0,3 i que log 3= 0,48, calcula els logaritmes següents.
- \(\log 4\) =
- \(\log 5\) =
- \(\log 6\) =
- \(\log 8\) =
- \(\log 12\) =
- \(\log 15\) =
- \(\log 18\) =
- \(\log 24\) =
- \(\log 25\) =
- \(\log 30\) =
- \(\log 36\) =
- \(\log 40\) =
- \(\log 45\) =
- \(\log 60\) =
- \(\log 72\) =
- \(\log 75\) =
Solucions
- 0,6
- 0,7
- 0,78
- 0,9
- 1,08
- 1,18
- 1,26
- 1,38
- 1,4
- 1,48
- 1,56
- 1,6
- 1,66
- 1,78
- 1,86
- 1,88
Exercici 6. Expressa en funció de log 2 i de log 3 les expressions següents.
- \(\log 14.4\) =
- \(\log 0.048\) =
- \(\log 3600\) =
- \(\log \sqrt{5.76}\) =
- \(\log \frac{\sqrt{5.4}}{12.8}\) =
- \(\log \frac{1}{6561}\) =
- \(\log \left(\sqrt{3^2 \cdot \sqrt{16}}\right)\) =
- \(\log \sqrt[3]{\frac{9}{2}}\) =
Solucions
- \(4\log 2 + 2\log 3 - 1\)
- \(4\log 2 + \log 3 - 3\)
- \(2(1 + \log 2 + \log 3)\)
- \(3\log 2 + \log 3 - 1\)
- \(\tfrac12 \left(1 + 3\log 3 - 13\log 2\right)\)
- \(-8\log 3\)
- \(\tfrac92 \log 2 - 1\)
- \(\tfrac13(2\log 3 - \log 2)\)