Identitats notables
Factoritza cada expressió fent servir identitats notables.
- \(a^2 - 4\) =
- \(a^2 - 9\) =
- \(a^2 - 49\) =
- \(a^2 - 1\) =
- \(a^2 - 25\) =
- \(a^2 - 36\) =
- \(16 - x^2\) =
- \(64 - x^2\) =
- \(-x^2 + 100\) =
- \(4a^2 - 1\) =
- \(9a^2 - 4\) =
- \(64 - 81x^2\) =
- \(-25 + 36m^2\) =
- \(100n^2 - 121\) =
- \(49 - 144k^2\) =
- \(81 - 16x^2\) =
- \(49 - 64x^2\) =
- \(196x^2 + 169\) =
- \(x^2 - 36y^2\) =
- \(-9x^2 + 16a^2\) =
- \(225b^2 - 4y^2\) =
- \(x^2 - \tfrac{1}{4}\) =
- \(\tfrac{x^2}{9} - y^2\) =
- \(\tfrac{16x^2}{25} - z^2\) =
- \(\tfrac{4}{a^2} - b^2\) =
- \(x^2 - \tfrac{8}{18}\) =
- \(\tfrac{27a^2}{75} - b^2\) =
- \(x^4 - 9\) =
- \(25x^4 - 4y^2\) =
- \(49x^6 - y^8\) =
- \(x^2y^2 - 1\) =
- \(9a^2 b^6 - 25x^2\) =
- \(x^6 y^4 z^2 - 4a^2 b^8\) =
- \(2x^2 - 50\) =
- \(5x^2 - 20\) =
- \(3x^2 - 3\) =
- \(4a^2 - 36\) =
- \(72 - 2a^2\) =
- \(48 - 3a^2\) =
- \(18x^2 - 8\) =
- \(48x^2 - 75\) =
- \(-36 + 9x^2\) =
- \(a^3 - 9a\) =
- \(a^3 - a\) =
- \(36ab - a^3b\) =
- \(a^4 - 25a^2\) =
- \(9a^4 - a^6\) =
- \(x^2y^4 - 4x^6y^2\) =