Identitats notables
Factoritza cada expressió fent servir identitats notables.
Exercicis 1–33
- \(a^{2}+6a+9\) =
- \(a^{2}+10a+25\) =
- \(a^{2}+4a+4\) =
- \(x^{2}-12x+36\) =
- \(x^{2}-18x+81\) =
- \(x^{2}-14x+49\) =
- \(1+2a+a^{2}\) =
- \(16-8a+a^{2}\) =
- \(64-16a+a^{2}\) =
- \(4x^{2}+4x+1\) =
- \(9x^{2}-6x+1\) =
- \(100x^{2}+60x+9\) =
- \(9a^{2}-12a+4\) =
- \(25a^{2}-10a+1\) =
- \(4a^{2}+28a+49\) =
- \(9+12a+4a^{2}\) =
- \(16a^{2}+40a+25\) =
- \(4-20a+25a^{2}\) =
- \(-x^{2}-12x-36\) =
- \(-x^{2}+10x-25\) =
- \(-49x^{2}+28x-4\) =
- \(x^{2}+\tfrac{2}{5}x+\tfrac{1}{25}\) =
- \(\tfrac{x^{2}}{4}-3x+9\) =
- \(\tfrac{9}{4x^{2}}-\tfrac{12}{x}+16\) =
- \(a^{2}-6ab+9b^{2}\) =
- \(a^{2}+20ab+100b^{2}\) =
- \(4x^{2}-12xy+9y^{2}\) =
- \(x^{4}+2x^{2}+1\) =
- \(x^{8}-10x^{4}+25\) =
- \(9x^{6}-12x^{3}+4\) =
- \(a^{4}+8a^{2}b+16b^{2}\) =
- \(9x^{2}-12xy^{2}+4y^{4}\) =
- \(4x^{6}+20x^{3}y^{2}+25y^{4}\) =
Solucions
Exercicis 34–71
- \(4x^6 + 20x^3y^2 + 25y^4\) =
- \(3a^2 + 6a + 3\) =
- \(2a^2 - 16a + 32\) =
- \(-5a^2 - 20a - 20\) =
- \(4x^2 + 40x + 100\) =
- \(9x^2a - 6xa + a\) =
- \(y^2 - 8xy^2 + 16x^2y^2\) =
- \(a^3 + 10a^2 + 25a\) =
- \(49a^3 + 14a^2 + a\) =
- \(a^4 - 2a^3 + a^2\) =
- \(45a^2 + 60a + 20\) =
- \(-8a^2 + 40a - 50\) =
- \(27a^2 + 72ab + 48b^2\) =
Solucions