Factor comú
Treu el factor comú en cada expressió.
Exercicis 1–36
- \(2a^2b - a^5c\) =
- \(4ab^3 - b^2c\) =
- \(x^3y^2 + 5x^7\) =
- \(3x^2 + x^3 - x\) =
- \(x^4 + 2x^2 + x\) =
- \(-4x^2 - 2x^5 - 3x^3\) =
- \(a^2b^3 + a^5b^2\) =
- \(a^3b^3 - a^2b^5\) =
- \(a^2b^3 - b^2a\) =
- \(a^2bc^3 - ab^2c + ab\) =
- \(x^4y^2z + x^3y^3z^4 - x^4y^5z^3\) =
- \(3x^2 + 6x\) =
- \(10x^2 - 5x\) =
- \(12x^2 + 4x\) =
- \(8a^2 + 6a\) =
- \(9a^2 - 15a\) =
- \(-21a + 28a^2\) =
- \(20x^5 - 25x^3\) =
- \(-24y^4 - 32y^6\) =
- \(-42z^8 + 28z^5\) =
- \(12x^3 - 18x^2 + 24x\) =
- \(30a^4 - 24a^2 + 16a^5\) =
- \(7a^3 - 14a^4 + 21a\) =
- \(16b^7 - 8b^3 + 24b^4\) =
- \(5x^3 - 2x^2 + 3x\) =
- \(7y^4 - 6y + 5\) =
- \(15a^3b - 18a^2c\) =
- \(16ab^4 - 24b^3c\) =
- \(20a^2b - 35a^3b^2\) =
- \(36a^4b^2 - 12a^2b^2\) =
- \(-32x^5y^6 - 24x^3y^8\) =
- \(18x^7y^5 + 9x^6y^9\) =
- \(12a^2b^3 - 18a^3b^2 + 6a^2b^2\) =
- \(45x^6y^3 - 20x^5y^3 - 5x^3y^2\) =
- \(15x^2y^3z - 30x^3y^4z^2 + 12x^4y^2z^3\) =
- \(28a^3b^2c^4 - 21a^2bc^3 + 7a^2bc\) =
Solucions
Exercicis 37–71
- \(60a^{3}b^{4}c^{3}+30a^{4}b^{5}c^{2}-15a^{3}b^{6}c^{5}+45a^{2}b^{6}c^{2}\) =
- \(36m^{4}n^{5}k^{3}-12m^{3}n^{4}l^{3}-24m^{4}n^{3}k^{4}+6m^{2}n^{3}\) =
- \(a^{n}+a^{n+1}\) =
- \(b^{n}-b^{\,n-1}\) =
- \(3x^{n}y^{2}-6x^{\,n+1}y\) =
- \(12a^{\,n+2}b^{\,m+1}+6a^{n}b^{\,m+3}\) =
- \(15x^{\,n+4}y^{\,m+2}-5x^{n}y^{\,m+5}\) =
- \(10a^{\,n+3}-15a^{n}+5a^{2n}\) =
- \(18b^{\,3n-1}-12b^{\,2n+1}+6b^{n}\) =
- \((a+1)a+(a+1)3\) =
- \((a-2)a+(a-2)5\) =
- \((2a-3)a-(2a-3)7\) =
- \((3a+1)a-(3a+1)4\) =
- \(x(3x-2)+5(3x-2)\) =
- \(x(4x-1)-7(4x-1)\) =
- \(a(5a-4)-(5a-4)3\) =
- \(x(3x-7)-(3x-7)8\) =
- \((2b-1)a-6(2b-1)\) =
- \((3x-y)x-(3x-y)y\) =
- \((a+x)a^2+(x+a)x^2\) =
- \(a^{2}(b-1)-(-1+b)5\) =
- \((a+3)a-(a+3)\) =
- \((a+2)a+(a+2)\) =
- \(2(a-7)+a(7-a)\) =
- \(2x(x-3y)-5(3y-x)\) =
- \(3(a+b)-6x(a+b)\) =
- \(a^{2}(x+y)+a(x+y)\) =
- \(4m^{2}(n^{2}+2)-2mn(n^{2}+2)\) =
- \(9x^{2}(y^{2}-3)+6xy(y^{2}-3)\) =
- \(a^{2}(x+y)+ax^{2}\) =
- \(3a(x^{2}+2x)-2(x^{2}+2x)\) =
- \(2a(a^2-3a)-(a^{2}-3a)\) =
- \(2a(b-1)-1+b\) =
- \(3x(y-x)-y+x\) =
- \((a^{2}-2a+3)a+(a^{2}-2a+3)5\) =
- \(a^{2}(a^{2}-3a+1)-2(a^{2}-3a+1)\) =
Solucions